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Fig. 1: WildLMa implements a framework for in-the-wild manipulation with a quadruped robot, which combines a whole-
body controller and imitation learning for effective single-skill learning. (a) Long Horizon Loco-Manipulation in indoor
as well as outdoor settings. (b) Teleoperation demonstration for collecting training data for imitation learning. (c) The
constructed skill library with various skills, which can be composed by LLM planner to complete complex tasks.

Abstract— ‘In-the-wild’ mobile manipulation aims to deploy
robots in diverse real-world environments, which requires the
robot to (1) have skills that generalize across object config-
urations; (2) be capable of long-horizon task execution in
diverse environments; and (3) perform complex manipulation
beyond pick-and-place. Quadruped robots with manipulators
hold promise for extending the workspace and enabling robust
locomotion, but existing results do not investigate such a
capability. This paper proposes WildLMa with three compo-
nents to address these issues: (1) adaptation of learned low-
level controller for VR-enabled whole-body teleoperation and
traversability; (2) WildLMa-Skill — a library of generalizable
visuomotor skills acquired via imitation learning or heuristics
and (3) WildLMa-Planner — an interface of learned skills
that allow LLM planners to coordinate skills for long-horizon
tasks. We demonstrate the importance of high-quality training
data by achieving higher grasping success rate over existing
RL baselines using only tens of demonstrations. WildLMa
exploits CLIP for language-conditioned imitation learning that
empirically generalizes to objects unseen in training demonstra-
tions. Besides extensive quantitative evaluation, we qualitatively
demonstrate practical robot applications, such as cleaning up
trash in university hallways or outdoor terrains, operating
articulated objects, and rearranging items on a bookshelf.

I. INTRODUCTION

Practical robot mobile manipulation requires generalizable
skills and long-horizon task execution. Consider a scenario
where a mobile robot is deployed out-of-box at a family
house. The robot is tasked with daily chores including
collecting the trash around the house and grabbing something

for human. To accomplish these tasks, the robot needs skills
that generalize to unseen objects and a planner capable of
compositing skills over a long horizon.

Existing methods [17, 20, 31, 32, 44, 61, 71] have ap-
proached mobile manipulation from two primary directions.
Modular methods [32, 44, 71] aim at designing decoupled
perception-planning modules. With advances in large-scale
vision models [28, 34, 45], recent modular methods [32,
44] exhibit strong generalizability in perception to an open
set of language-specified objects. However, their planning
modules [6, 20, 32, 44] often rely on heuristic-based motion
planning, limiting tasks to mostly simple pick-and-place.
End-to-end approaches [11, 12, 17, 22, 31, 69], on the other
hand, use learned policies to enable robot with complex
actions. They, however, often hold a strong assumption of
the small training-testing distribution gap (e.g., sim2real [31]
or intra-class variation [17]) and thus do not show strong
generalizability. In addition, policies learned via imitation
learning are prone to compounding error [26, 69] over
long-horizon execution. Thus, these learned skills should be
designed to be as atomic as possible for both generalizability
and accuracy.

This paper investigates in-the-wild mobile manipulation
that addresses these issues for real-world deployment. Specif-
ically, in-the-wild manipulation requires the robot to have
skills that (1) generalize across texture, lighting, and diverse
environments; (2) are capable of long-horizon execution; and
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(3) perform complex manipulation beyond pick-and-place.
To this end, we propose WildLMa. For generalizability,

WildLMa enables language-conditioned imitation learning
(WildLMa-Skill). Building upon ACT [17, 69], WildLMa-
Skill improves generalizability via pre-trained CLIP and
composable skills. Instead of simply using CLIP features [12,
22], we apply a reparameterization trick [73] to CLIP to
compute probability maps given object text query as an aux-
iliary input. We then use VR teleoperation [9, 13] to collect
human demonstrations to acquire complex skills such as non-
prehensile manipulation. We adapt a learned low-level con-
troller [31] for VR-based whole-body teleoperation, which
significantly increases the robot workspace and reduces the
demonstration cost by 26.9% compared to the decoupled
strategy. Finally, based on a library of acquired generalizable
and atomic skills, WildLMa provides a language interface
(WildLMa-Planner) that allows interfacing with LLMs to
composite skills for long-horizon execution.

In summary, our contributions are:
• A generic framework with techniques that allow

generalizable language-condition imitation learning
(WildLMa-Skill) with interfacing to the LLM planner
(WildLMa-Planner).

• Demonstrations of in-the-wild mobile manipulation
tasks with full-stack and systematic deployment of the
proposed framework.

• Comprehensive evaluation and ablation for the proposed
technique, which paves the way for future study.

II. RELATED WORK

a) Mobile Manipulation: Mobile manipulation has
gained increasing attention for its vision of enabling robots to
perform diverse practical tasks. In terms of hardware config-
urations, wheeled robots have made substantial strides [1, 29,
32, 55, 58, 61, 71] for its reliable base movement [54], while
recently, legged robots have also gained more interest for its
robust locomotion [10, 63] and the extended workspace via
whole-body arm-base coordination [15, 22, 31, 42].

Categorized by methodology, existing methods can be di-
vided into modular methods and end-to-end methods. Recent
modular approaches [2, 27, 32, 33, 44, 66, 67, 68, 71]
design decoupled perception-planning strategy. In particular,
perception [32, 44, 71] are often done by applications of
vision foundation models [21, 28, 34, 45]; whereas grasp-
ing are done by off-the-shelf pose prediction models (e.g.,
GraspNet [14]) and IK solver [47]. Despite strong perception
designs, modular methods are mostly limited to simple pick-
and-place tasks. On the other hand, end-to-end approaches
use Reinforcement Learning (RL) [19, 31, 40, 60, 61] or
Imitation Learning (IL) [17, 22, 48] to enable complex tasks
beyond pick-and-place such as articulated manipulation [4,
61] and non-prehensile manipulation [17, 22]. However,
these work often fall short when training-testing distributions
mismatch.

Most closely related to our work, Yokoyama et al. [66]
proposed to use sim2real RL for in-the-wild mobile manip-
ulation. However, they do not investigate manipulation tasks

other than simple pick-and-place. WildLMa uses imitation
learning to learn diverse skills with generalizability, task
complexity, and long-horizon run for in-the-wild execution.

b) Long-horizon Mobile Manipulation: For robots to
assist with real-world tasks such as cleaning up home, they
need to be capable of dealing with long-horizon mobile
manipulation, where independent skills are planned and
triggered to complete given goals. Existing methods rely
on sampling-based planning [18, 53], RL [19, 30, 65, 66],
and Large Language Models (LLMs) [20, 24, 46, 51] to
coordinate skill primitives for long-horizon task execution.
Recent work [20, 24, 46, 51] have found that LLM-based
methods, especially Large-Mutlimodal Models (LMMs) [8,
37], are promising to serve as effective planners for embodied
agents, where the research efforts are centered around hierar-
chical search [46] and re-planning [71]. WildLMa is intended
to be orthogonal to these existing work in LLM planner.
Instead of studying the planning capability, we investigate
the potential of interfacing LMMs with skills acquired via
imitation learning for practical applications.

c) Imitation Learning: Imitation learning has demon-
strated promising results through learning from real-world
expert demonstrations [9, 11, 13, 17, 22, 48, 57, 64]. Inves-
tigated for decades since the 80s [41], behavior cloning [5,
41] is one of the most commonly used imitation learning ap-
proach that learns an end-to-end mapping from observations
to actions. Recently, researchers have shown that this classic
approach not only allows complex manipulations [9, 13, 17,
70], but also holds the potential that scaling up training data
with low-cost hardware [12, 17, 22, 48, 59, 64, 69] will
lead to generalizable policies. Similar to existing work [9,
13, 23, 43, 49], we also use VR devices to collect expert
demonstrations that minimize the expert-agent observation
gap [69]. To reduce the cross-embodiment gap between the
human operator and the quadruped robot, we combine the
VR demonstration with learned whole-body controller. In
addition, we also improve the vanilla ACT model [17, 69] to
support language-conditioned imitation learning that is more
generalizable with autonomous termination.

d) Whole-body Control: Quadruped Whole-Body Con-
trol (WBC) draws inspiration from the natural motions of
animals to extend the robot workspace via arm-base coordi-
nation. The WBC capability is usually achieved via model-
based hierarchical trajectory optimization [3, 35, 50, 72, 74]
or sim2real RL [15, 22, 31]. Our work is based on the low-
level controller proposed by VBC [31], which designed a bi-
level RL paradigm with a low-level whole-body controller.
Notably, some existing work has also attempted to com-
bine teleoperation with whole-body control for quadruped
robots [42, 72] but does not investigate learning skills from
teleoperation. Most related to our work, Ha et al. [22]
demonstrated whole-body imitation learning with handheld
data collection hardware. The main differences between our
work and Ha et al. [22] are (1) the data collected without
teleoperating the robot can include only wrist camera obser-
vation, which may lead to worse performance than multi-
camera setup as we empirically verify and (2) Ha et al. [22]
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Fig. 2: Overview of WildLMa models and robot setups. (a) WildLMa takes a frozen CLIP model to encode task-specific
texts and visual observations; (b) Our robot platform is a Unitree B1 quadruped combined with a Unitree Z1 arm and a
3D-printed gripper, with two RGBD cameras and one lidar mounted on.

focus on execution of short tasks; while we investigate in-the-
wild mobile manipulation with long horizon task execution.

III. METHOD

WildLMa designs three components to address challenges
for in-the-wild mobile manipulation. Sec. III-A describes
adapting a whole-body controller to support efficient teleop-
eration and more diverse real-world tasks. In Sec. III-B, we
propose WildLMa-Skill, which modifies the pre-trained CLIP
model [45] for generalizable imitation learning. WildLMa-
Skill then constructs a skill library consisting of learned skills
and analytical skills (e.g., navigation). Finally, WildLMa-
Planner (Sec. III-C) interfaces WildLMa-Skill with an LLM
planner to carry out long-horizon execution.

A. Whole-body VR Teleoperation

Recent imitation learning methods have benefited from
improved data collection methods via VR/AR-based teleop-
eration [9, 13, 23, 43]. However, though human operators
can naturally tele-operate bipedal humanoid robots [9, 16,
23], it is non-trivial to tele-operate quadruped robots due to
the embodiment gap [39] between two-legged human and
quadruped robots inspired by four-legged animals.

To reduce the need for the tele-operator to consider both
the base movement and the arm movement, we propose to
use a whole-body controller [31] that allows smooth arm-
base coordination for the robot. In particular, we use the low-
level whole-body policy developed by Liu et al. [31]. Trained
with RL, the learned whole-body controller takes in base
commands (linear velocity and angular velocity) and 6DOF
end effector pose w.r.t. the arm base. The policy outputs
arm and base joint commands for coordinated movement that
extends the workspace (illustrated in Fig. 1).

Based on the pre-trained low-level controller, we then
design an interface for human users to teleoperate the robot.
We use the OpenTV framework [9] with Apple Vision Pro,
which allows real-time video streaming, tracking of 6DOF
poses of head and hands, and 3D gesture keypoints. To

minimize the expert-agent observation gap [69], the tele-
operator gets real-time streams of the robot’s head camera
views and wrist camera views.

To translate tele-operator movement to robot movement,
we linearly transform the operator’s right wrist pose (relative
to their initial hand pose) Tright ∈ SE(3) into the relative
end effector pose Tee ∈ SE(3). We scale the translations with
a constant sc, as we find that the workspace of the Z1 arm
is slightly larger than average human arms. More concretely,
let Rright be the rotational component and tright be the
translational component of Tright, Tee is given by,

Tee =

[
Rright sc · tright
0⊺ 1

]
. (1)

The gripper open-close actions are then naturally mapped
from the pinching of the thumb and the index finger (via 3D
keypoints). The whole-body controller automatically controls
the base rotation to coordinate with the arm. In turn, the tele-
oeprator’s left wrist governs planar base movements (e.g.,
angular and linear velocities). When the tele-operator pinches
their left fingers, VR tracks the pose Tleft as a virtual
joystick with deadzone (xth = 5cm). We find this simple
base command mapping sufficient for the tasks involved.

B. WildLMa-Skill

WildLMa-Skill contains skills from two categories: skills
acquired via imitation learning and with analytical planners.

a) WildLMa-Skill - Imitation Learning: The collected
real-world demonstrations can be turned into autonomous
skills with existing behavior cloning methods [9, 17]. Many
existing methods, however, struggle to generalize to novel
environments [17]. To improve the generalizability of learned
skills without expensive demonstration collection cost, we
propose to adapt pre-trained CLIP [45] to ACT [69] for
imitation learning of individual skills.
Improving Generalizability with CLIP. We encode camera
observations with a frozen CLIP visual backbone. Instead of
simply using intermediate CLIP features as in [12, 22], we
apply MaskCLIP [73], a reparameterization trick to generate
image-text cross attention map. More concretely, let Ω be
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Fig. 3: Overview of WildLMa-planner. Given a constructed hierarchical scene graph, WildLMa-planner adopts a coarse-to-
fine searching mechanism to determine node traversal and structured actions to take.

the space of RGB images. The original CLIP [45] is a
mapping function fvisual(·) : Ω 7→ RC , where RC is
the image-text embedding space learned from contrastive
learning [45]. MaskCLIP modifies the network architecture
to a new mapping function gvisual(·) : Ω 7→ H×W × RC ,
which is a feature map aligned to the CLIP embedding space
RC (illustrated in Fig. 2).
Image-text Cross Attention. Consistent with findings by
Chi et al. [12], we found that the adaptation of CLIP [45]
improves the performance. However, when tested with ob-
jects unseen in the training demonstrations, the success rate is
still unsatisfactory. Thus, we propose to make the acquired
skills language-conditioned by introducing cross-attention.
We provide task-specific texts during both the training and
testing time (e.g., for the ADA door button-pressing task,
we use ‘door’ and ‘ADA button’) with CLIP text embedding
ftext(·) : Text 7→ RC . With slight abuse of notation, the text
vector can then be compared with the CLIP feature map via
cosine similarity

CROSSATT(·, ·) = gvisual(·)ftext(·)
||gvisual(·)|| ||ftext(·)||

, (2)

where the comparison is done independently on the pixel
level. The resulting similarity is comparable to the proba-
bility map of text queries. We apply dropout [52] to cross-
attention during training to avoid over-reliance on attention.
Autonomous Termination. To autonomously terminate
skills, in order to hand control back to high-level planners,
we add a virtual ‘end’ action signal prediction. Empirically,
adding the end signal to only the end of the episode does not
work, as the supervision is too sparse. Our proposed solution
is to implement a buffer of end signal for every skill such that
the last n = 10 frames of the demonstrations carry the end
signal. During deployment, we use a sliding window detector
to terminate task execution if the end signal is greater than
τ = 0.8 for 10 consecutive predictions.

b) WildLMa-Skill - Analytical Planning: In this paper,
we learn all manipulation-related skills with imitation learn-
ing. For the base-only skill (i.e., navigating from a known

location to another known location), we implement it with
analytical planning.

C. WildLMa-Planner
The WildLMa-Skill module provides skills that can be

composed for long-horizon execution, which is intentionally
designed to be agnostic of the high-level planner. Here, we
propose WildLMa-Planner, a simple LLM-based planner to
show how learned skills can be composed.
Initial Mapping. We implement a LiDAR-based SLAM
system using FAST-LIO [62] and DLO [7] to obtain consis-
tent robot pose estimation in the world frame. We manually
annotate pose-level waypoints (e.g., stand in front of recep-
tacles) and connectivity for task execution. The robot stands
at every waypoint to capture images with its head camera.
To automatically annotate the semantics of each waypoint,
GPT4-V [37] provides high-level descriptions of images and
lists of objects of each waypoint. We manually create abstract
nodes (e.g., a room with multiple pose-level waypoints) to
construct a hierarchical graph for searching. Note that off-
the-shelf scene graph construction methods [20, 25, 36] can
potentially replace this step.
Hierarchical Long-horizon Planning. We adopt a hier-
archical coarse-to-fine approach to translate template-free
commands into detailed, actionable robot skills.

Coarse Planner. Using Chain of Thought [56], the coarse
planner receives template-free instructions and decomposes
them into individual tasks. For instance, the command ‘clean
the trash in the hallway’ can be decomposed into tasks
‘navigate to hallway’, ‘pick up the trash’, ‘navigate to trash
bin’, and ‘place trash in the trash bin’.

Fine-grained Planner. The fine-grained planner invokes
actionable skills at particular nodes given individual tasks
generated by the coarse planner. The fine-grained planner has
prior knowledge of the robot’s skill library (shown in Fig. 3)
and nodes constructed in the initial mapping stage. For each
task, the agent uses a breadth-first search (BFS) approach to
search nodes and identify the optimal goal node. During this
stage the LLM acts as a heuristic evaluator, estimating the
likelihood of a node being the most likely location related to



Tabletop Grasping Button Pressing Ground Grasping

Method I.D. O.O.D. I.D. O.O.D I.D. O.O.D Avg. Succ.

WildLMa (Ours) 94.4% 75% 80% 57.5% 60% 60% 71.2%
ACT (Mobile ALOHA) [17] 77.8% 19.4% 55% 25% 60% 30% 40.8%
OpenTV [9] 88.9% 77.8% 75% 25% 50% 50% 64.4%
VBC [31] 50%∗ 50%∗ NA† NA† 43.8%∗ 43.8%∗ 46.9%
GeFF [44] 55.6%∗ 55.6%∗ NA† NA† NA† NA† 55.6%

TABLE I: Success rate of autonomous skill execution. Imitation learning methods outperform RL [31] and zero-shot
method [44] on comparable tasks. Both OpenTV and WildLMa achieve noticeably higher success rates in the challenging
O.O.D. setting. †: methods involve learned/manual policies that are not trivially applicable to the task settings. ∗: Method
does not differentiate object sets and success rates are averaged on I.D. and O.O.D. object sets.

Pipeline Collect & Drop Trash Shelf Rearrangement

WildLMa (Ours) 7/10 3/10
ACT [17, 69] 0/10 0/10

TABLE II: Evaluation of long-horizon execution. Given a
few training demonstrations (10), WildLMa improves long-
horizon task success rate via (1) improved generalizability
of single skill and (2) divide-and-conquer.

the task, based on the semantic context and objects present
at the node. Once the target node is identified, the planner
constructs a plan detailing the navigation and manipulation
sequence drawn from the pre-defined skill library.

IV. EXPERIMENTS

Hardware Platforms. We use the Unitree B1 quadruped
robot with a Unitree Z1 arm. We replace the beak-like default
Z1 end effector with a 3D-printed parallel soft gripper, which
was adapted from UMI-Gripper [12] to directly operate
the gripper with gear rotations. For perception, an Azure
Kinect camera is mounted on the robot’s head, and an Intel
Realsense D405 is used as the in-wrist camera. A LIVOX
MID-360 LiDAR is installed at the robot’s tail for enhanced
localization during navigation.

Implementation Details. The WildLMa-Skill module in-
dependently trains weights for each skill (with 30-60 demon-
strations each acquired via tele-operation). The head/wrist
RGB observations are processed through a CLIP [45]
ViT-B/16 encoder with MaskCLIP [73] re-parameterization.
Task-specific texts are then compared with the feature maps
to generate cross-attention, where texts may differ in training
sequences and testing run. For navigation between given
waypoints, we implement a PD-based waypoint follower.
WildLMa-Planner requires geometric annotations of nodes
and edges. For efficiency, the spatial locations of nodes are
annotated by operating the robot to turn 360 degrees during
the initial scene scanning, and the edges are made between
physically adjacent nodes with no obstacle in between.

Experimental Protocol. We define two experiment set-
tings to investigate the generalizability of skills learned via
imitation learning [9, 13, 17]. The in-distribution (I.D.) set-
ting tests the learned skills with backgrounds and object ar-
rangements approximately similar to the training demonstra-
tions. Note that, to make the setting more realistic, we do not
enforce identical robot positioning and lighting conditions

Backbone In Dist. Out of Dist. Avg. Succ.

CLIP [45] 83.3% 69.4% 76.4%
ResNet [69]⋆ 77.8% 19.4% 48.6%
DinoV2 [38] 88.9% 77.8% 83.3%

TABLE III: Ablation of different visual encoders pre-
trained with different objectives. The evaluation is done on
the object-grasping tasks. ⋆: we followed ACT [17, 69] to
use ImageNet-pretrained ResNet-18 as the encoder, which
has fewer parameters.

even in I.D. settings. The Out-of-distribution (O.O.D.) setting
permutes the testing objects (placement/texture), receptacles,
and background environments for learned skills.

Baseline Implementation. Besides ablating design
choices of our components, we implement several base-
lines to validate the efficacy of WildLMa. To compare
with existing imitation learning methods, we choose Mobile
ALOHA [17] which uses ACT [69] with ResNet-18 and
OpenTV [9] using ACT and DinoV2 [38]. Unless specif-
ically noticed, these baselines use the same training data
as WildLMa. In addition, we compare two recent works in
quadruped loco-manipulation [31, 44] to compare WildLMa
against RL-based and zero-shot grasping methods. Note that
both VBC [31] and GeFF [44] were designed for grasping,
so they are not trivially applicable to non-prehensile manip-
ulation such as button pressing.

A. Evaluation

We address important research questions in our evaluation:
• What advantages does WildLMa-Skill have compared to

existing baselines in quadruped manipulation? [A1, A2]
• How does WildLMa-Planner perform in long-horizon

execution? [A3]
• Are the design choices (e.g., visual backbone and cross-

attention) effective? [A4, A5]
• Does whole-body control improve teleoperation? [A6]
• What are the real-world applications of WildLMa? [A7]

A1. WildLMa outperforms recent imitation learning
baselines. From Tab. I, we can see that WildLMa achieves
best overall success rate. Compared to vanilla ACT [17, 69],
WildLMa achieves slightly better success rates on I.D. setting
and significantly better success rate on the O.O.D. setting.
We reason this is because ResNet is vulnerable to changes
in lighting and texture. OpenTV [9], on the other hand,



Whole-body (Ours) Decoupled Control W/o Whole-body (Arm Only)

Metric Ground Grasping Rearrange Shelf Ground Grasping Rearrange Shelf Ground Grasping Rearrange Shelf

Average Time 21.87s 27.25s 37.35s 29.81s - 27.88s
Success Rate 95% 70% 80% 40% 0% 70%

TABLE IV: Comparison of success rate and completion time for our whole-body controller, decoupled control with
manual base pitching and arm control implemented via Unitree SDK, and arm-only policies. Four teleoperators are tasked
to manipulate objects at various heights for three trials in each task.

Camera Tabletop Grasping Button Pressing Door Opening

Head + Wrist 94.4% 80% 70%
Head Only 27.8% 75% 30%
Wrist Only 83.3% 85% 10%

TABLE V: Ablation of input visual modality. Tasks that
involve occlusion significantly benefit from multi-view setup.

Backbone In Dist. Out of Dist. Avg. Succ.

w/ cross-attention (Ours) 94.4% 75% 84.7%
w/o cross-attention 83.3% 69.4% 76.4%

TABLE VI: Ablation of cross-attention on the object-
grasping tasks. Cross-attention improves both I.D. and
O.O.D. setting by using additional task-specific information.

shows more robustness to these adversarial conditions due
to its use of the recent DinoV2 backbone [38], but slightly
underperforms our method.
A2. WildLMa outperforms RL and zero-shot baselines.
Due to less reliance on real-world demonstrations, RL and
zero-shot baselines demonstrate less performance gap be-
tween I.D. and the O.O.D. settings in Tab. I. As an RL-
based method, VBC [31] suffers from sim2real gaps such as
inaccurate contact modeling and cumulative sensor latencies.
Therefore, VBC performs worse in real-world settings than
its simulation counterpart. On the other hand, zero-shot
modular methods such as GeFF [44] do not naturally exhibit
corrective behavior like learning-based methods, which are
vulnerable to errors compounding from different modules.
A3. WildLMa is capable of handling long-horizon manip-
ulation under perturbations. Tab. V validates the efficacy
of WildLMa in handling long-horizon tasks under certain
perturbations. We include videos on the website. Our ex-
periments include 20 training sequences with variations in
robot positioning, lighting, and object placement in both the
training and testing time. ACT fails entirely for long-horizon
tasks when trained directly on a few sequences of demon-
strations. On the other hand, WildLMa successfully learns
generalizable skills from a limited number of demonstrations
to achieve better success rates for long-horizon execution.
A4. Pre-trained Visual Backbones improve skill gen-
eralizability. We ablate the choice of visual backbones
in Tab. III. CLIP [45] is the simple application of CLIP
features without cross-attentions. While different backbones
perform similarly in the I.D. setting, we see that frozen large
models [38, 45] perform much better in the O.O.D. setting.
A5. Cross-attention significantly improves O.O.D. imi-
tation learning. Tab. VI shows the proposed cross-attention

(a) Tabletop Grasping (b) Ground Grasping

(a) Door Button Pressing (a) Shelf Rearrangement

Fig. 4: Qualitative illustrations of some evaluated tasks.

improves both the I.D. and O.O.D. performance of CLIP [45]
module by introducing additional task-specific text prompts.
A6. Whole-body controllers enable efficient VR teleoper-
ation of quadruped robots. The motivation for combining
whole-body control and teleoperation is to improve teleoper-
ation efficiency. To validate this point, we report the statistics
of teleoperation in Tab. IV, which shows our learning-based
controller outperforms the decoupled analytical controller
from Unitree SDK. Since these tasks require reaching objects
at various heights (toys and books at different levels of
storage), teleoperation without whole-body control fails to
grasp from the ground due to the limited workspace.
A7. WildLMa allows the robot to learn diverse tasks.
Besides Fig. 4, we provide more video demonstrations of
WildLMa in the supplementary video and the website.

V. CONCLUSION

In this paper, we present WildLMa, a modular framework
that includes (1) WildLMa-Skill, which implements a library
of generalizable visuomotor skills that improve ACT [69]
for learning generalizable imitation learning skills; and (2)
WildLMa-Planner, an interface that enables interactions be-
tween imitation learning skills and LLM planner to support
long-horizon task execution. Furthermore, we deploy this
framework on a quadruped robot controlled by a whole-body
controller, which allows us to efficiently collect demonstra-
tion data and support extended workspace for diverse tasks.
In summary, WildLMa implements practical, generalizable
skills, and long-horizon manipulation, which we hope will
motivate future research toward in-the-wild mobile manipu-
lation that facilitates real-world deployment of robots.
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